Desacetyl-diltiazem displays severalfold higher affinity to CYP2D6 compared with CYP3A4.
نویسندگان
چکیده
It has earlier been shown that the isoenzymes CYP2D6 and CYP3A4 are involved in O- and N-demethylation of diltiazem (DTZ), respectively. Apparently, CYP3A4 plays a more prominent role than CYP2D6 in the overall metabolism of DTZ. However, previous observations indicate that the opposite might be true for the pharmacologically active metabolite desacetyl-DTZ (M1). Thus, the aim of the present in vitro investigation was to study the relative affinity of M1 to CYP2D6 and CYP3A4. Immortalized human liver epithelial cells transfected with either CYP2D6 or CYP3A4 were used as a model system, and the presence of M1 and its metabolites in the cell culture medium was analyzed by high-performance liquid chromatography/UV detection both before and following 90 min of incubation. The estimated K(m) value for the CYP2D6-mediated O-demethylation of M1 was approximately 5 microM. In comparison, the affinity of M1 to CYP3A4 (N-demethylation) was about 100 times lower (K(m), approximately 540 microM) than to CYP2D6. These in vitro data suggest that M1 metabolism via CYP2D6, in contrast to the parent drug, probably is the preferred pathway in vivo. Metabolism mediated through CYP2D6 is associated with a substantial interindividual variability, and since M1 expresses pharmacological activity, individual CYP2D6 metabolic capacity might be an aspect to consider when using DTZ.
منابع مشابه
Short Communication Desacetyl-Diltiazem Displays Severalfold Higher Affinity to CYP2D6 Compared with CYP3A4
It has earlier been shown that the isoenzymes CYP2D6 and CYP3A4 are involved in Oand N-demethylation of diltiazem (DTZ), respectively. Apparently, CYP3A4 plays a more prominent role than CYP2D6 in the overall metabolism of DTZ. However, previous observations indicate that the opposite might be true for the pharmacologically active metabolite desacetyl-DTZ (M1). Thus, the aim of the present in v...
متن کاملShort Communication Desacetyl-Diltiazem Displays Severalfold Higher Affinity to CYP2D6 Compared with CYP3A4
It has earlier been shown that the isoenzymes CYP2D6 and CYP3A4 are involved in Oand N-demethylation of diltiazem (DTZ), respectively. Apparently, CYP3A4 plays a more prominent role than CYP2D6 in the overall metabolism of DTZ. However, previous observations indicate that the opposite might be true for the pharmacologically active metabolite desacetyl-DTZ (M1). Thus, the aim of the present in v...
متن کاملShort Communication Desacetyl-Diltiazem Displays Severalfold Higher Affinity to CYP2D6 Compared with CYP3A4
It has earlier been shown that the isoenzymes CYP2D6 and CYP3A4 are involved in Oand N-demethylation of diltiazem (DTZ), respectively. Apparently, CYP3A4 plays a more prominent role than CYP2D6 in the overall metabolism of DTZ. However, previous observations indicate that the opposite might be true for the pharmacologically active metabolite desacetyl-DTZ (M1). Thus, the aim of the present in v...
متن کاملExtensive metabolism of diltiazem and P-glycoprotein-mediated efflux of desacetyl-diltiazem (M1) by rat jejunum in vitro.
The objective of this in vitro study was to investigate both the intestinal metabolism and transport of diltiazem (DTZ) and its major metabolites in rat jejunum. Metabolism experiments were performed with everted sacs, whereas sheets mounted in a symmetrical twin chamber system were used in transport studies. DTZ was rapidly desacetylated by the rat jejunum to the principle metabolite desacetyl...
متن کاملCytochrome P450 expression and regulation in CYP3A4/CYP2D6 double transgenic humanized mice.
Analysis of the developmental and sexual expression of cytochrome P450 drug-metabolizing enzymes is impeded by multiple and varied external factors that influence its regulation. In the present study, a CYP2D6/CYP3A4-double transgenic (Tg-CYP2D6/CYP3A4) mouse model was employed to investigate hepatic CYP2D6 and CYP3A4 ontogeny and sexual dimorphism. Both age and sex have considerable effects on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 30 1 شماره
صفحات -
تاریخ انتشار 2002